In silico and functional characterization of the promoter of a Eucalyptus secondary cell wall associated cellulose synthase gene (EgCesA1)
نویسندگان
چکیده
Background Cellulose is an important biopolymer produced by all plants and is used in a number of different industries, including for pulp and paper production. Cellulose is deposited into the plant cell wall by a large membranebound protein complex, which is composed of different cellulose synthase (CESA) proteins. The cellulose content and pattern of deposition in plant cell walls is highly variable depending on the function of the cell. All plant cells have a thin primary cell wall, but a number of plant cell types, including xylem cells, also deposit a secondary cell wall to give these tissues mechanical strength required to perform their function. Different cellulose synthase (CesA) genes have been shown to be involved in the deposition of primary and secondary walls. In Arabidopsis, three CesA (AtCesA4, 7 and 8) genes have consistently been associated with cells depositing secondary cell walls, while a different set of CesA genes have been shown to function during primary cell wall formation [Reviewed in 1]. These findings have been mirrored by studies of CesA gene orthologs in Populus and Eucalyptus[2-4]. While there have been a number of studies on CesA genes and their functions, much less is known about the regulation of these genes. In a previous study, we investigated the promoters of CesA genes involved in primary and secondary cell wall formation by performing a phylogenetic footprinting analysis to identify cis-elements conserved in the promoters from orthologous Arabidopsis, Populus and Eucalyptus cellulose synthase genes [5]. We identified a number of putative cis-regulatory elements that may play a role in the regulation of cellulose biosynthesis during primary and secondary cell wall formation. In the current study our aim is to further validate the ciselements identified in the CesA gene promoters by investigating their conservation across different Eucalyptus species and to determine the regulatory function of these promoter regions and the proteins which bind to them.
منابع مشابه
Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress.
Trees constitute the majority of lignocellulosic biomass existing on our planet. Trees also serve as important feedstock materials for various industrial products. However, little is known about the regulatory mechanisms of cellulose synthase (CesA) genes of trees. Here, the cloning and characterization of three CesA genes (EgraCesA1, EgraCesA2, and EgraCesA3) from an economically important tre...
متن کاملTransgenic Arabidopsis thaliana and Nicotiana tabacum overexpressing the Eucalyptus grandis Cellulose Synthase 3 and its expression pattern in different Eucalyptus species and tissues
Background In Brazil, the forest industry accounts for 4,5% from the Gross Domestic Product and the country is the biggest Eucalyptus cellulose exporter. That’s really good news because Eucalyptus forests are a competitive and efficient alternative to convert carbon from the atmosphere in cellulose, an important source for paper and bioenergy production. The cellulose biosynthesis happens throu...
متن کاملAnalysis of cellulose synthase (CesA) promoter function in trees using Induced Somatic Sector Analysis (ISSA)
Detailed knowledge of the tissue specificity of gene expression is of central importance not only for our understanding of developmental processes during wood formation, but also is a prerequisite for the deliberate manipulation of xylogenesis candidate genes. Today, much of our knowledge about specific gene expression is based on annual model plants in part because perennial tree systems are o...
متن کاملThe in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کاملCharacterising the role of the Eucalyptus grandis SND2 promoter in secondary cell wall biosynthesis
Background NAC and MYB transcription factors (TFs) have been shown to play prominent roles in the regulation of plant developmental processes. Two Arabidopsis thaliana NAC domain TFs (AtSND2, AtSND3) and one MYB domain TF (AtMYB103) were shown to be downstream targets of two master regulators of xylem fibre cell development, NST1 and SND1 [1,2]. These TFs were able to induce the expression of a...
متن کامل